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Abstract. This paper is an experimental study on an utilization of additional
knowledge about the decomposition problem to be solved. We have demonstrated
this approach on the hypergraph bisectioning that can serve as a model of system
decomposition in common, data base decomposition etc. We have focused on the
extension of the Bayesian Optimization Algorithm BOA. The extension of the
original BOA algorithm is based on the usage of a prior information about the
hypergraph structure. This knowledge is used for both setting initial Bayesian
network and the initial population using injection of clusters to improve the
convergence of the decomposition process. The behaviour of our version KBOA is
tested on the set of benchmarks, such as grid and random geometric graphs as well
as real hypergraphs.

1 Introduction

The decomposition of the system such as communication networks, complex data base
system and VLSI layout are usual tasks to be solved. These tasks can be often formalized as
a hypergraph partitioning into k& partitions — it is a well known problem of graph theory.
This paper deals with the case of 2-way partitioning called bisectioning. If necessary the
k-way partitioning can be realized by a series of the hypegraph bisectioning.

Many heuristics are used to solve this NP-complete problem. We can refer to the well
known paper [1], where a good overview of the efficiency of known local search techniques
as well as simulated annealing is presented. A very good survey about netlist partitioning
techniques was done in [2], where the geometric representation, combinatorial
formulations, move-based and clustering approaches are discussed. The interesting hybrid
genetic algorithm is described in [3]. The authors have used a simple genetic algorithm
(GA) [4], with reordering of graph nodes to receive shorter schemata/building blocks so
as to prevent the disruption of schemata mainly of large defining length.

The problem of schemata disruption has been intensively studied in GA community
during few last years. As a result a new class of promising approaches based on an
estimation of the joint distribution of promising solutions (EDA) was proposed in [5], [6]
and recently new ideas in [7], [8].



We focus in this paper on an extension of Bayesian Optimization Algorithm BOA [5],
[9], [10] based on the problem knowledge to speed up the convergence of optimization
process during hypergraph bisectioning.

The paper is organized as follows. In chapter 2 and 3 the problem formulation is
declared and cost function is defined. Chapter 4 presents the original BOA algorithm which
allows to understand the ideas of knowledge based approach presented in chapter 5. In
chapter 6 benchmark tests are specified and experimental results are discussed. In chapter 7
the conclusions and research activities for the future are summarized.

2 Problem formulation

More formal, the particular bisectioning problem can be defined as follows: Let us
assume a hypergraph H=(V,E), with n = |V] nodes and m = |E| edges. We are supposed to
find such a bisection (V1,V2) of V into equal sized parts ( vi/=1v2/ v=viur2 ) that
minimizes the number of hyperedges which have nodes in different set V1, V2. The set of
external hyperedges can be labelled as £, (V1,V2). The primary objective function/cost of
the hypergraph bisectioning is the number of external hyperedges, shortly called cut size:

cViVa)= [Eas (Vi,V) | = | {ec E [ enV; #0, enVy %0} | (1)

This is the case of strongly balanced bisectioning. Next, we define the set M(v) of
hyperedges incident to node v and the set N(v) of nodes that are neighbours of node v:
M) ={ecE |vee) 2)
Using the previous equation the cost can be expressed as

c(VLV2)= [UM®) [+ [OM®©) ] -m (3)

vevl; vel,

The immediate/first neighbours of a node v:
NO)={u /e v,uee v=u) (4)
The degree of node v is defined as D(v) = /N(v) /.

An example of the hypergraph with
8 nodes and 5 hyperedges is shown in
Fig.1. The bisection of the hypergraph
resulted in V; :{V1, Vv, V7, V4},
Vo, = {vs, vs v3 vs). The external
hyperedges  E..(V1,V:) = {e; e4), cut
size C(V], Vg) =2.
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Fig.1 The bisection of a hypergraph
3 Solution encoding

For the BOA algorithm the following ordinary encoding of the solution is used:

Table 1. The ordinary solution encoding for bisection of hypergraph.

Chromosome/String Meaning
gene value 11010010 Partition number
locus value 12345678 Hypergraph nodes




Each solution of the bisection is represented by a chromosome, which is a binary string
X=(x;, x5, ..., X, ). The gene value x; represents the partition number, the index of locus
specifies the node in the hypergraph. It is possible to express the cost function using the
string encoding. In case of hypergraph bisectioning the cost function can be expressed
using the equation (3):

c(VLV2) =[UMG) [+ JOMG) [ -m, fori=I,...n (5)
Vx=1 Vx;=0

In case we define a dummy node vy with M(vy)=£J, we can transform the last equation
into:

c(VLV2) =]UM(i x;)/+ [OM(@i(1-x)) ] -m,  fori=1,...n , (6)

where M(i) is a set of hyperedges incident of node i.

4 BOA algorithm

In the simple genetic algorithms the standard crossover and mutation operators for
offspring generation are used. In the last few years there has been a growing interest in the
field of Estimation of Distribution Algorithms (EDAs) also called probabilistic model-
building genetic algorithms, where crossover and mutation operators are replaced by
probability estimation and sampling techniques. They use statistical information contained
in the set of selected parents to detect gene dependencies. The estimated probability model
is used to generate new promising solutions according to this distribution. The process can
be described as follows:

Generate initial population of size N (randomly),
While termination criteria is false do
begin
Select parent population of S individuals according to a selection method (SXN);
Estimate the distribution of the selected parents;
Generate new offspring (according to the estimated model),
Replace some individuals in current population by generated offspring;
end

There are various probability distribution models with different complexity.

In BOA (Bayesian Optimization Algorithm) [5] Bayesian network (BN) is used to
encode the structure of a problem. Each gene in the chromosome is treated as a variable and
represented by a node in the dependency graph. For each variable JX; it is defined a set of
variables Ty called parents it depends on, so the distribution of individuals is encoded as

p(X) = ﬁip(Xi ) (7)

Generally, the existence of oriented edge from JXj to X; in the network implies that the
variable X; belongs to the set I, . To reduce the space of possible networks, the number of

incoming edges into each node is limited to k. According to results in [10] we have limited
the parameter k in our experiments to be three.



Example of Bayesian network for 5 variables:

N

The corresponding joint probability distribution is
p(X)=p(X;) p(X, | X3)- p(X, | Xo, X5)- p(X, | Xy, X)) p(X, | X,)  (8)

The Bayesian Dirichlet metric (BD) [11] is used to measure the quality of the network:
n-1 m' (7 )! (m'(x;,my ) + m(x;,my))!
p(D.B|&)=p(BIEIT T1— a s s ©
i=0 my (M'(my )+ m(zyx )y, m'(x;, 7y )!
where § is the prior information about the problem, D is the population of parents and
p(B|¢) is the prior probability of the network B. The product over x; runs over all instances

of the variable X; and the product over 7, runs over all instances of the set of its parents

My . The term m(zy ) stands for the number of occurrences of the tuple 7, in the

population D and m(x;, 7y, ) stands for the number of individuals in D having both X; set to

x; as well as Iy set to 7y, . The prior knowledge on the probability distribution is
represented by numbers m'(7y ) and m'(x;, 7y ) representing the expected m(ry ) and
m(x;,7y ) values. The detailed description of the prior parameters is in the next section.

If no prior information is available, the simpler K2 metrics can be used. It is a special
case of BD metrics having all prior counts m'(x;,7y )setto 1 and all prior counts of parent

configurations m'(7y ) set to number of possible values on i-th position (equal to 2 for

binary chromosome).

Many algorithms can be used to build up the network. The optimal search is NP-hard,
thus in the implementation a simple greedy algorithm was used with only one edge addition
in each step. The algorithm starts with an empty network B and the edge giving the highest
increase of metric value is then added to the network B. This process is repeated until no
more addition is possible.

After network is constructed, new instances/solutions are generated. First, the
variables/nodes of BN are ordered in the topological order and each iteration, the nodes
whose parents are already calculated are generated using the conditional probabilities. This
is repeated until all the variables are generated.

5 Knowledge based KBOA algorithm

For many combinatorial problems the information about the structure of the problem is
available. If the information is complete, the dependence graph can be constructed in-hand
by the expert. This method is used in the FDA (Factorized Distribution Algorithm) [6]. In
our case, the structure of the problem is given by the list of edges between hypergraph
nodes but the decomposition of the problem in the sense of FDA is not simple because the
variables of the cost functions are overlapping. We can only expect that adjacent nodes in
the hypergraph are dependent but we have no exact knowledge about the degree of
independence between non-adjacent nodes.



The purpose of our approach is to use modified BOA algorithm to learn the structure of

the problem together with the partial (local) information about the linkage to improve the
performance of that algorithm. Three possible approaches were tested:

The first one was based on the prior information about the problem in the BD metric.
The term p(B|<&) represents the prior probability of the network B. We use a simple

assignment p(B|¢&) = cx® , where ¢ is a normalization constant, & e (0,1] is a penalty

constant factor and ¢ is the number of edges in the final Bayesian network having no
match in the hypergraph to be bisected. The greedy algorithm that constructs the
dependency graph using only one edge addition in each step, prefers edges existing
between adjacent nodes of hypergraph (local information about the problem) with the
setting ¢ to be zero. When no such edge exists, a penalization is used by setting o6 =1.

The prior knowledge about the optimized problem is also represented by numbers
m'(7x,) and m'(x;,wy,) . It can be shown, that the values of m'(x x,) and m'(x;, 7 x,)
express our belief in the accuracy of the values m(7y ) and m(x;,zy ). When these

values increase, the BD metric will tend more towards the prior assignment of
distribution, when those numbers decrease the influence of sampled values m(x x,) and

m(x;, 7y, ) becomes more significant. Our experiments with this type of information
were not too promising, so we used the original uniform assignment.

The standard BOA uses the random set of solutions in the initial population. We have
tested the usage of the initial population based upon the knowledge of the hypergraph

structure. Initial solutions are affected by injection of clusters of predefined size. The
detection of such a cluster in a hypergraph is shown in the Fig. 2:
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Fig.2. Clustering technique
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First, a random node is selected to be the seed of the cluster. Then the effect of addition

of each neighbouring node is expressed by the number of external and internal hyperedges
incident of this node. Each step the node having minimal ratio external/internal edges is
selected. When maximum size of cluster is reached or all neighbours are selected, next
cluster is created. The cluster injection serves as a source of low-order building blocks.

6 Experimental results

6.1

Test graphs

The four types of graph structures are used:

L.

Regular graphs Gridn.c with grid structure [3], [10] where the notion » specifies the
number of nodes, ¢ specifies the minimal cut size. As an example a bisection of graph
Grid100.2 is represented in Fig.3a having a 2-edge bottle-neck in the dashed cut line.

Random geometric graphs Un.d [1], [3]. Random geometric graph on n vertices is
placed in the unit square and coordinates of its nodes are chosen uniformly.



There exists an edge between two vertices if their Euclidean distance is / or less, where
the expected vertex degree is specified by d = nz .

3. Caterpillar graphs CATk n [3], with & articulations, six legs for each articulation, and »
nodes, see Fig. 3¢ with k=3 and n=21. This type of graph serves as a hard benchmark.

Fig.3a Grid graph Fig.3b Geometric random graph Fig.3c Caterpillar graph

4. Hypergraphs representing real circuits labelled by /Cn [12]. The global optima is not
known. The hypergraphs can be also specified by pair nodes/edges: [C67/138,

IC151/419, IC116/329, Fractl49/147. The structure of these circuits can be
characterized as a random logic.

6.2  Results of the hypergraph and graph bisectioning

We have performed various experiments to demonstrate the efficiency of the developed
algorithm KBOA comparing to the original BOA algorithm.
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Fig.4 Average and best known cut size for BOA and KBOA a) on real hypergraphs, b) on geometric random
graphs c) on grid graphs, d) on caterpillar graphs
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In Fig. 4 the comparison of BOA and KBOA is shown for four groups of graphs. The
best known solutions are determined by KBOA itself or well known hMetis program[13].
We performed ten independent runs for KBOA and BOA on each of the 14 test graphs of
various type and size. The population size is the same for BOA and KBOA and it is set to
the value for which the KBOA was successful for all ten runs for the case of grid graphs.
Generally, for other types of graphs the population size was increased linearly with the size
of the problem (as suggested in [8]). The KBOA outperforms BOA in all tests of
hypergraph bisectioning. The time consumption for both algorithms is comparable due to
equal population size. Let us note that BOA algorithm is theoretically capable to reach the
similar cut size as KBOA but with about five times greater population size (for our test
graphs) and thus with a rapid increase of computation time.

In Fig. 5 the performance of KBOA algorithm on the hypergraph IC151 for different
size of injected clusters is shown. The size of clusters is expressed as a percentage of the
number of hypergraph nodes. The proper value about 5% is used in all our trials. In the case
of the smaller cluster injection, the growth of proper building blocks is weak and the
opposite case of the injection of too large clusters leads into local optima.

In Fig.6 the growth of average value of building blocks order (ABB) in the population
is depicted. This experiment is done for grid graph Grid100.2 with cluster size as a
parameter. For the experiment the population size is set to N=300-2400 for KBOA and to
N=2400 for BOA to get the global optimum for all sizes of cluster. Because two
symmetrical optimal solutions exist, we separate all the chromozomes into two groups
according to their similarity to each of the possible solution and the calculation of ABB
based on the Hamming distance is summarized. It is clear that for small cluster size and
BOA the average order of BBs in the first generation is about 50% which is typical for
initial random population. It is evident a strong influence of the cluster size on the speed up
of the evolution. Let us note that in the 1% KBOA the cluster injection is not used and it is
affected only by the phenomenon of prior probability (penalization) of the Bayesian
network (see chapter 5) and only this phenomenon differentiates 1% KBOA from the BOA.

7 Conclusions and future works

In this paper we presented KBOA algorithm as a promising enhancement of the original
version of probabilistic model-building genetic algorithm BOA [8], [9], [10]. The both
algorithms use Bayesian network to model multivariate data as a mean of estimation of
distribution of promising solutions. Although the BOA is powerful tool for solving hard
optimization problems inclusive class of deceptive problems there are open questions to be
solved e. g. the time complexity for very large problems, the setting of population size and
parameter k (the complexity parameter of BN) for current problem, etc.



Our goal was to incorporate a problem knowledge into the whole process of BN
construction. Firstly we applied the prior probability of the Bayesian network expressed by

the term p(B|¢&) = cx . The essence of this approach lies in the penalization of edges of

BN having no match in the hypergraph. The influence of this phenomenon can be
recognized in Fig.6 on the comparison of 1%KBOA and BOA as a slight increase of
convergence speed for 1% KBOA. The concept of cluster injection into the initial
population detected on the hypergraph structure seems to be a really promising tool for
enhancement of the population genotype. This phenomenon leads to the meaningful
reduction of cost function and population size. This approach can be used for another
optimization problems but with particular problem knowledge.

Future activities will be directed towards an efficient construction of the dependency
graphs using the techniques of parallel processing and on a hybridizing of KBOA algorithm
using local improvement to enhance genotype not only in the initial population but also
during the evolution.
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