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Abstract: This paper deals with the utilizing of the Bayesian optimization algorithm (BOA) for the Pareto        
bi-criteria optimization of the 0/1 knapsack problem. The main attention is focused on the incorporation of the
Pareto optimality concept into classical structure of the BOA algorithm. We have modified the standard
algorithm BOA for one criterion optimization utilizing the known niching techniques to find the Pareto optimal
set. The experiments are focused mainly on the bi-criteria optimization because of the visualization simplicity
but it can be extended to multiobjective optimization, too.
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1     Introduction

Practical problems are often characterized by several non-commensurable and often competing objectives. While
in the case of single-objective optimization the optimal solution is simply distinguishable, this is not true for
multiobjective optimization. The standard approach to solve this difficulty lies  in finding  all possible trade-offs 
among the multiple, competing objectives. These solutions are optimal, nondominated, in that there are no other
solutions superior in all objectives. These so called Pareto optimal solutions lie on the Pareto optimal front.
There are many papers that present various approaches to find  Pareto optimal front almost based on the classical
evolutionary algorithms. The Niched Pareto Genetic Algorithm (NPGA) combines tournament selection and the
concept of Pareto dominance [1]. A wide review of basic approaches and the specification of original Pareto
evolutionary algorithms include the dissertations [2], [3] where the last one describes the original Strength Pareto
Evolutionary Algorithm (SPEA). An interesting approach using nondominated sorting in genetic algorithm
(NSGA) is published in [4].
The classical genetic algorithms (GA) have the common disadvantage - the necessity of the setting the
parameters like crossover, mutation and selection rate and the choice of suitable type of genetic operators. That
is why we have analyzed and used one of the Estimation of Distribution Algorithms (EDAs) called probabilistic
model-building genetic algorithms, too. The crossover and mutation operators used in standard GA are replaced
by probability estimation and sampling techniques. We  have focused on  the Bayesian optimization algorithm
published in the basic issue in [5], [6]. Recently we have published our experience with this algorithm in [7], [8]
where single criterion and bi-criteria optimization of hypergraph bisectioning was described. In this paper we
have focused on the bi-objective optimization of knapsack problem which belongs to the well known test
benchmarks.

2   Multiobjective  optimization

A general multiobjective optimization/maximization problem (MOP) can be described as a vector function f that
maps a tuple of n parameters to a tuple of m objectives [3]:

max           y = f(x)=(f1(x), f2(x),…, fm(x)) (1)
subject to g(x) = (g1(x), g2(x),....., gk(x)) <=0
subject to x = (x1 , x2,,…..,xn) ∈ X

y = (y1 , y2,,….,ym) ∈ Y,
where x is called decision vector, X is the parameter space, y is the objective vector, Y is the objective space and
the constraint vector g(x) <=0 determines the set of feasible solutions/set Xf.
The set of solutions of MOP includes all decision vectors for which the corresponding objective vectors can not
be improved in any dimension without degradation in another - these vectors are called Pareto optimal set. The
idea of Pareto optimality is based on the Pareto dominance.



For any two decision vectors a, b it holds

af b (a dominates b)       iff  f(a)>f(b),
af = b (a weakly dominates b)  iff   f(a)>=f(b),
a ~ b    (a is indifferent to b)      iff a, b are not comparable

A decision vector a dominates decision vector b ( af b) iff fi(a ) ≥ fi(b)  for i=1,2,.., m with fi(a )> fi(b) for at
least one i. The vector a is called Pareto optimal if there is no vector b which dominates vector a in parameter
space X.
In objective space the set of nondominated solutions lies on a surface known as Pareto optimal front. The goal

of the optimization is to find a representative sampling of solutions along the Pareto optimal front. The way how
to do it lies in keeping the diversity using some of the niching techniques. Standard BOA is able to find mostly
one optimal solution at the end of the optimization process, when the whole population is saturated by
phenotype-identical individuals.

3 Problem specification

Generally, the  0/1 knapsack problem consists of set of items, weight and profit associated with each item, and
an upper bound of the capacity of the knapsack. The task is to find  a subset of items which maximizes the sum
of the profits in the subset, yet all selected items fit into the knapsack so as the total weight does not exceed the
given capacity. This single objective problem can be extended to multiobjective problem by allowing more than
one knapsack. Formally, the multiobjective 0/1 knapsack problem is defined in the following way: Given a set of
n items and a set of m knapsacks, with

jip , profit of item j according to knapsack i

jiw , weight  of item j according to knapsack i
ci capacity of  knapsack i

find a vector x = (x1, x2 ,....., xn) ∈ {0,1}n, such that xj =1 iff item j is selected and

f(x)=(f1(x), f2(x),…, fm(x)) is maximum, where (2)

fi(x) = ∑
=

n

1j
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and  for which the  constraint is fulfilled
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The complexity of the problem solved  depends on the values of knapsack capacity. According to [3] we
used the knapsack capacities  stated by the  equation:

ci = 0.5 ∑
=

n

1j
jiw , (5)

The encoding of solution into chromosome is realized by binary string of the length n. To satisfy the constraints
(4) it is necessary to use repair mechanism on the generated offspring to be feasible one. The repair algorithm
removes items from the solution step by step until the capacity constraints are fulfilled. The order in which the
items are deleted is determined by the maximum profit/weight ratio per item; the maximum profit/weight ratio qj 
is given by the equation
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The items are considered in increasing order of  the qj, i.e., item with the lowest profit per weight unit is removed
first. This mechanism respects the capacity constraints while decreasing the overall profit as little as possible.

4 Pareto optimal BOA

In our Pareto BOA algorithm we replaced the fitness assignment and replacement step of standard BOA by the
diversity-preserving niching method based on the promising Pareto technique utilizing a new strength  criterion
for the evaluation process [3]. The following specification describes the whole reproduction process of our
algorithm. Let us note that although we solved bi-objective optimization, our algorithm is able to solve            
m-objective optimization problems.
Our Pareto BOA algorithm can be described by the following steps:
Step 1: Initialization: Generate an initial population P0 of size N randomly.

Step 2: Fitness assignment: Evaluate the initial population.



Step 3: Selection: Select the parent population as the best part of current population by 50% truncation
selection.

Step 4: Model construction: Estimate the distribution of the selected parents using Bayesian network
construction.

Step 5: Offspring  generation: Generate  new  offspring  (according to the distribution  associated to the
Bayesian network).

Step 6: Nondominated  set  detection and fitness assignment: Current  population  and offspring are joined,
nondominated solutions are found, evaluated and stored at the top of the new population. Then
dominated offspring and parents are evaluated separately.

Step 7: Replacement: The new population is completed by offspring  and the best part of current population, so
the  worst individuals from current population are canceled to keep the size of the population constant.

Step 8: Termination: If predefined number of generations Ng is reached or stopping criterion is satisfied then the
last Pareto front is saved, else go to Step 3.

The most important part of our Pareto algorithm described above is the procedure (step 6) for detection of
nondominated (current Pareto front) and dominated solutions and sophisticated fitness calculation. The
procedure for current nondominated and dominated set detection is described in following steps:

1. For each individual X in the population P compute the vector of the objective functions
))(,),(),(()( XfXfXfXf m21 K= (7)

2. Detect  subset of nondominated solutions
{ }jiijj XXPXPXXP f:| ∈∃∧∈= (8)

3. For each nondominated solution Xj fromP compute its strength value as
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The fitness  for nondominated solutions is equal to the reverse of the strength value
)()( jj Xs1Xf =′ (10)

4. For each dominated solution Xi from P determine the fitness as
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where ijj XXPX f∧∈ . In the original approach [3] all individuals dominated by the same nondominated

individuals have equal fitness. We proposed an extension by adding a term )()(. 1PiXrc + into the
denominator (11), where )( iXr is the number of individuals from P (not only from nondominated

solutions) which dominate Xi and coefficient c is set to very small number, for example 0.0001. This term is
used to distinguish the importance of individuals in the same “niche” (niche is an area in  the objective space
dominated by the same part of Pareto front).

This type of fitness evaluation has the following advantages:
• For all nondominated individuals 1Xf i ≥′ )( , for dominated individuals holds 1Xf i <′ )( . If we use

the replace-worst strategy, implicit Pareto elitism is included.
• Individuals from Pareto front dominated smaller set of individuals receive higher fitness, so the

evolution is guided towards the less-explored search space.
• Individuals having more neighbours in their „niche“ are more penalized due to the higher )( jXs value

of associated nondominated solution.
• Individuals dominated by smaller number of nondominated individuals are more preferred.

5 Experimental results

5.1   Test benchmarks

In order to be able to compare the performance of our algorithm and other evolutionary algorithms with known
results we used two knapsack benchmarks specified by 100 (Kn100) and 250 items (Kn250) published on the
web site [http://www.tik.ee.ethz.ch/~zitzler/testdata.html#fileformat]. Let us note that the uncorrelated profits pi,j
and weights wi,j were chosen, where pi,j and wi,j are random integers in the interval <10,100>. We have compared
our results with presented results obtained by two evolutionary algorithms SPEA [3] and  NSGA[4]. These two
algorithms represent the well working evolutionary multiobjective algorithms.



5.2 Experiments and results

All experiments were run on Sun Enterprise 450 machine (4 CPUs, 4 GB RAM), in future we consider the
utilizing the cluster of Sun Ultra 5 workstations.
In Fig. 1 the history of evolution process for the benchmark Kn100 is depicted. The 1st, 25th, 50th and 100th

generation of one run of Pareto optimal BOA is shown. In experiment we set the population size N=4000, but
only 500 of the randomly chosen individuals/solutions are shown in the graph. The X-coordinate of each point 
equals to the function value f1(x) and the Y-coordinate equals to the function f2(x). This experiment shows the
dynamism of the evolution process and the creation of Pareto front.
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Fig.1.  Distribution of the solutions for Kn100 benchmark plotted in the a) 1st generation, b) 25th generation, c)
50 th generation, d) 100 th generation.

In Fig.2a there is the comparison of the final Pareto front produced by our Pareto BOA algorithm and by the
SPEA [3] and NSGA [4] algorithms for the case of Kn100 benchmark and in Fig. 2b for the case of Kn250
benchmark. We performed 5 independent runs and constructed the final Pareto front from the 5 particular Pareto
fronts. From Fig. 2a it is evident that for Kn100 the Pareto solutions produced by our Pareto BOA in the middle
part of Pareto front are slightly better than the Pareto solutions produced by SPEA and NSGA. What is more
important – our Pareto BOA produces more solutions in the Pareto front margins. In Fig. 2b we see that for
Kn250 the difference between Pareto fronts is more expressive – our Pareto BOA outperforms the SPEA and
NSGA. We used the following setting for our algorithm: for the Kn100 we set the population size N to 2000, for
the case of the Kn250 the population size N equals to 5000. The number of generations used is about 300. The
computation time is about 15 minutes for the Kn100. In case of the Kn250 the time was 2 hours for N=5000 and
about 40 minutes for N=2000. To reduce the computation time we consider the implementation of parallel
version of the Pareto BOA algorithm. It would be also possible to shorten the computational time by decreasing
the size of population, but we wanted to keep those predefined values used in our previous experiments (e.g. in
the case of  hypergraph partitioning [7],[8]).
In the context of algorithm comparison an important question arises: What measure should be used to express the
quality of the results so that the various evolutionary algorithms can be compared in a meaningful way. In [3]
two measures are described. One of them denoted as S represents the size of the objective space covered, the
second measure denoted C represents the coverage of two sets according to their dominance. We preferred in our
comparison the topology/shape of the Pareto fronts.
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Fig. 2a  Final Pareto fronts for  Kn100, population size N=2000
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Fig. 2b  Final Pareto fronts for  Kn250, population size N=5000

6 Parallel Pareto BOA

In [9], [10] we proposed the Distributed Bayesian Optimization Algorithm. It uses a cluster of workstations as a
computing platform to speedup the evolution process. Let’s note that in the distributed environment the whole
population P is split into several parts, each part Pk is being generated and evaluated by different processor. This
approach can be extended to the Pareto BOA. We propose the following modification of the procedure for Pareto
detection and fitness assignment:
First, each processor will compute the vector of objective functions for all individuals from its part Pk of
population P.  Then, each processor detects its local set of nondominated solutionsPk as

{ }jikikjjk XXPXPXXP f:| ∈∃∧∈= (12)

and the master processor creates the global nondominated setP from the union of local nondominated setsPk as
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The strength values for nondominated solutions fromP can be obtained as the sum of local strength values
computed in parallel by all processors:
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After that all nondominated solutions and their strength values are known, so each processor is able to compute
the Pareto fitness for all individuals from its part of population according to equations (10) and (11).

7 Conclusions

We have implemented bi-objective Pareto BOA algorithm for two multiple 0/1 knapsack problems Kn100 and
Kn250. For this purpose we have modified the evaluation phase of the single BOA algorithm [5], [7], [8] using
the concept of a strength criterion published in the SPEA algorithm [3]. Let us note that the SPEA is a modern
multiobjective optimization algorithm which outperforms a wide range of classical methods on  many  problems.
That is why we compare the performance of our Pareto BOA algorithm mainly with the performance of the
SPEA algorithm. The Pareto solutions produced by our algorithm are uniformly distributed along the Pareto
front which is more global than the Pareto fronts obtained by  NSGA and SPEA algorithms.
But many problems remain to be solved, namely the greater computational complexity. The next possible
improvement lies also in more sophisticated niching technique, modification of replacement phase of the
algorithm and  the introduction of problem knowledge into optimization process.
To reduce the computational complexity we proposed the idea of the parallelization of Pareto BOA including the
decomposition and detection of the Pareto front. This approach is an extension of Distributed Bayesian
Optimization Algorithm [9], [10] based on the parallelization of Bayesian network construction. The future work
will be focused on the implementation of Parallel Pareto BOA algorithm for the cluster of SUN workstations.
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