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Abstract. In recent years, several researchers have concentrated on
using probabilistic models in evolutionary algorithms. These Estima-
tion Distribution Algorithms (EDA) incorporate methods for automated
learning of correlations between variables of the encoded solutions. The
process of sampling new individuals from a probabilistic model respects
these mutual dependencies such that disruption of important building
blocks is avoided, in comparison with classical recombination operators.
The goal of this paper is to investigate the usefulness of this concept in
multi-objective optimization, where the aim is to approximate the set of
Pareto-optimal solutions. We integrate the model building and sampling
techniques of a special EDA called Bayesian Optimization Algorithm,
based on binary decision trees, into an evolutionary multi-objective op-
timizer using a special selection scheme. The behavior of the resulting
Bayesian Multi-objective Optimization Algorithm (BMOA) is empiri-
cally investigated on the multi-objective knapsack problem.

1 Introduction

The Estimation of Distribution Algorithms (EDAs) [5, 8] also called probabilistic
model-building evolutionary algorithms have attracted a growing interest during
the last few years. Recombination and mutation operators used in standard EAs
are replaced by probability estimation and sampling techniques to avoid the
necessity to specify certain EA parameters, to avoid the disruption of building
blocks and to enable solving of non-linear or even deceptive problems having
considerable degree of epistasis.

In multi-objective optimization the usual goal is to find or to approximate the
set of Pareto-optimal solutions. Research in the design of multi-objective evolu-
tionary algorithms has mainly focused on the fitness assignment and selection
part. In contrast, the variation operators could be used from the single objective
case without modification, which gave them only little attention. Some studies
indicate, however, that the existence of multiple objectives influences the suc-
cess probabilities of mutations which in turn has consequences for the choice of



the mutation strength [7, 3]. For recombination it is unclear whether combining
parents that are good in different objectives improve the search as they could
create good compromise offspring [2], or whether they contain such incompat-
ible features that a combination does not make sense, thus advocating mating
restrictions. The fact that recombination generally is a “contracting” operator
might also conflict with the goal to reach a broad distribution of Pareto-optimal
solutions.

In this study we investigate the use of EDAs for multi-objective optimization
problems to overcome the aforementioned difficulties when creating offspring
from a set of diverse parents from different trade-off regions. The next section
introduces the Bayesian Optimization Algorithm (BOA) as a special EDA based
on the Bayesian network model. It summarizes disadvantages of Bayesian net-
work and introduces BOAs based on decision trees. We derive our own incre-
mental equation for construction of decision trees and demonstrate the algorithm
for decision tree construction. In section 3 a new Multi-objective BOA is pro-
posed. We derive design guidelines for a useful selection scheme in connection
with the construction of the probabilistic model and develop a new operator
based on ε-archives [4]. Section 4 demonstrates the applicability of the approach
using the multi-objective knapsack problem and compares the results to other
multi-objective evolutionary algorithms.

2 Bayesian Optimization Algorithm (BOA)

One of the most general probabilistic models for discrete variables used in EDAs
is the Bayesian network (BN). It is able to encode any dependencies of variables
that can obtain one out of a finite set of values.

2.1 Structure of Bayesian Network

A Bayesian network for the domain of possible chromosomesX = (X0, . . . , Xn−1)
represents a joint probability over X . The BN representation consists of 2 parts,
a set of conditional independence assertions and a set of local conditional dis-
tributions, that allow us to construct a global joint probability distribution of
chromosome from the local distributions of genes.

The first part, the set of conditional independence assertions, is expressed by
a dependency graph, where each gene corresponds to one node in the graph. If
the probability of the value of a certain gene Xi is affected by value of other gene
Xj , then we say that “Xi depends on Xj” or “Xj is a parent variable of Xi”.
This assertion is expressed by existence of edge (j, i) in the dependency graph.
A set of all parent variables of Xi is denoted Πi, it corresponds to the set of all
starting nodes of edges ending in Xi.

In the example of Fig. 1 (left), genes X0, X2 are independent and the value of
X1 is affected by X0 and X2. Under this assertion we can write the probability
of whole chromosome (X0, X1, X2) as the product of local distributions:

p(X0, X1, X2) = p(X0) · p(X2) · p(X1|X0, X2) (1)
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Fig. 1. Example of dependency graph for n = 3 (left) and decision tree (right)

Now we will focus on the second part of BN representation – the set of local
distributions. For simplicity let’s consider binary genes. In the case of gene X0

resp. X2 from our example this local distribution is unconditional and can be
estimated from the population by simple counting individuals where X0 = 1
resp. X2 = 1 and dividing it by the size of population N . In the case of gene X1

the gene depends on X0 and X2, so the local distribution is conditional and can
be expressed by the following table:

X0, X2 00 01 10 11
p(X1 = 1|X0, X2) ... ... ... ...

(2)

The dots in the second row denote values estimated from the population by

p(X1 = 1|X0, X2) = m(X1 = 1, X0, X2)/m(X0, X2).

With this Bayesian network we are able to determine the probability of each
concrete chromosome X = (x0, x1, x2).

The most important and also most time-consuming part of EDA is the al-
gorithm for construction of the probabilistic model from the population. Most
methods for automated learning of probabilistic models have been adopted from
the area of data mining. When a significant building block is detected among
the solutions in the population, the information about dependency of its genes
is added to the model.

The original BOA algorithm uses a hillclimbing algorithm to step-by-step
improve the Bayesian network. It starts with independent genes (no edges are
present between nodes of dependency graph), such that the local probabilities
are unconditional. Then in each step the algorithm examines all possible edges
and it adds the “best edge” to the network. By the term “best edge” we mean
the edge which does not introduce any cycle in the dependency graph and which
improves the score most. The quality of each edge is expressed by the Bayes-
Dirichlet metric (BDe, see [1]). This equation measures the bias in the probability
distribution of combinations of genes in the population. For further details on
various types of EDAs see the exhaustive survey [5].

2.2 Binary Decision Trees Based BOA

The problem with the BN approach is that after introducing one more parent
variable of Xi, the number of columns of the conditional distribution table of
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Fig. 2. Example of construction of the decision tree for variable X3, n = 4, and final
decision tree for variable X3

Xi doubles, making the computation time of the BDe metric exponentially in-
creasing with the number of parents. In previous versions of BOA the number
of possible parents was limited to k, making the BDe computable in real time.
A better divide-and-conquer approach is based on binary decision trees, firstly
proposed for EDAs in [6].

The model is composed of the set of trees, one tree is for each variable. The
dependence assertions are expressed by existence of splitting nodes and the local
probabilities are stated in leaf nodes. A set of all parent variables of Xi denoted
Πi corresponds to the set of all decision nodes of i-th tree.

Decision trees are a more accurate model than Bayesian network. They allow
us to describe the dependencies of alleles (gene values). Let us consider our first
example from Fig. 1. Assume that if X0 = 1, then the value of X1 does not
depend on X2, but when X0 = 0, then the value of X1 depends on both X0 and
X2. Because p(X1|10) = p(X1|11) = p(X1|1∗), this would reduce the number of
table columns in (2), as can be seen in the following table:

X0, X2 00 01 1∗
p(X1 = 1|X0, X2) ... ... ...

(3)



This situation can be expressed by a decision tree (see Fig. 1, right). Each
variable which determines the X1 value corresponds to one or more split nodes
in the tree, each leaf determines p(X1) among the individuals fulfilling the split
conditions on the path from the root.

A further advantage of decision trees lies in the low complexity of their build-
ing. The step of adding a new split node is easy to evaluate by the metric – it
splits only one column in the local distribution table. From the Bayes-Dirichlet
metrics (BDe) we derived the incremental equation for adding one new binary
split:

Gain(Xi, Xj) =

∑

r∈{0,1}

∑

s∈{0,1}
Γ (mr,s + 1) · Γ (

∑

r∈{0,1}

∑

s∈{0,1}
(mr,s + 1))

∑

r∈{0,1}
Γ (

∑

s∈{0,1}
(mr,s + 1)) · ∑

r∈{0,1}
Γ (

∑

s∈{0,1}
(mr,s + 1))

(4)

where Xi is the variable for which the tree is being constructed, Xj is the parent
variable – possible split, and mr,s is the number of individuals having Xi = r
and Xj = s. Note that the splitting is done recursively, so mr,s is determined
only from the subpopulation being splitted. We often use the logarithm of this
metric, which avoids multiplication operations. Another method for construction
of decision trees straight from the BDe metric can be found in [6]. Additionally
this paper proposed a leaf-merge operator to obtain decision graphs instead of
decision trees.

As result of model construction a set of decision trees is obtained, see Fig. 2.
The dependencies are acyclic, so there exists a “topological” ordering of genes
o0, o1, . . . , on−1 such that parents Πi are from the set {o0, o1, . . . , oi−1}. When
generating a new binary chromosome, the independent gene Xo0 is generated
first, by “flipping the coin” according to its single leaf node. Then, other genes
are generated in the o1, . . . , on−1 order. The generation of Xi is driven by actual
values of parent variables Πi, the decision tree traversal ends up in one of the
leaf nodes which describe the probability p(Xi = 1).

3 Multi-objective BOA

For the design of a multi-objective BOA some important aspects have to be taken
into account, some due to the existence of multiple objective, others from the
necessity of the probabilistic model building techniques. Preliminary tests with
a simple (µ+ λ)-strategy and fitness assignment based on the dominance grade
have shown that a trivial multi-objective extension leads to poor performance.
The population is likely to converge to an “easy to find” region of the Pareto set,
as already noticed by [9], and duplicate solutions are produced repeatedly. The
resulting loss of diversity leads to an insufficient approximation of the Pareto
set and is especially harmful for building a useful probabilistic model. Therefore
the following design requirements are essential:

1. Elitism (to preclude the problem of gradual worsening and enable conver-
gence to the Pareto set)



Algorithm 1 Select(A,P, µ, ε)
Input: old parent set A, candidate set P , minimum size µ, approximation factor ε
Output: new parent set A′

for all x ∈ P do
B := {y ∈ A|� log fi(y)

log ε � = � log fi(x)
log ε � ∀ objective functions i}

if B = ∅ then
A := A ∪ {x}

else if ∃y ∈ B such that x � y then
A := A \ B ∪ {x}

end if
end for
A′ := {y ∈ A|  ∃z ∈ A : z � y}
D := A \ A′

if |A′| < µ then
Fill A′ with µ− |A′| individuals y ∈ D in increasing order of |{z ∈ A′ ∪ D|z � y}|

end if
Return: A′

Algorithm 2 (µ+ λ, ε)-BMOA
A := ∅
while |A| < µ do

Randomly create an individual x.
A := Select(A, {x}, µ, ε)

end while
while Termination criteria not fulfilled do

Create Bayesian Model M from A.
Sample λ new individuals from M .
Mutate these individuals and put them into B.
A := Select(A,B, µ, ε)

end while

2. Diversity maintenance in objective space (to enable a good approximation
of the whole Pareto set)

3. Diversity maintenance in decision space (to avoid redundancy and provide
enough information to build a useful probabilistic model)

3.1 A New Selection Operator

From the existing selection/archiving operators in evolutionary multi-objective
optimization, the ε-Archive [4] has been designed to meet the requirements 1 and
2 above. This method maintains a minimal set of solutions that ε-dominates all
other solutions generated so far. However, as this set can become very small, the
scheme has to be modified to provide enough decision space diversity. The new
selection operator is described in Alg. 1. The idea is that now also dominated
individuals are allowed to survive, depending on the number of individuals they
are dominated by.



3000

3200

3400

3600

3800

4000

3000 3200 3400 3600 3800 4000 4200

f2

f1

Pareto set
"t=012000"
"t=100000"

3000

3200

3400

3600

3800

4000

3000 3200 3400 3600 3800 4000 4200

f2

f1

Pareto set
"t=012000"
"t=100000"

Fig. 3. Development of the population of (500+500, ε)-BMOA on the KP-100-2 for ε =
10−6 (left) and ε = 0.005 (right) after t = 12000 and t = 100000 function evaluations

3.2 The (µ + λ, ε)-BMOA

The combination of the selection operator (Alg. 1) and the variation based on the
probabilistic model described in Section 2.2 results in a Bayesian Multi-objective
Optimization Algorithm described in Alg. 2. In this (µ+λ, ε)-BMOA, µ denotes
the (minimum) number of parents that survive to the next generation being the
input to build the model, λ the number of samples from the model in one gener-
ation and ε the factor that determines the granularity of the approximation. As
the Bayesian model M we used the set of decision trees described in section 2.2.

4 Experimental Results

In recent research activities in the field of multi-objective meta-heuristics the
0/1 knapsack problem has become a standard benchmark. Results of several
comparative case studies are available in the literature, accompanied by test
data through the Internet. The problem can be stated as KP-n-m:

Maximize fj(x) =
∑n

i=1 xi · pi,j

s.t. gj(x) =
∑n

i=1 xi · wi,j ≤ Wj

xi ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ m
(5)

where pi,j and wi,j are the elements of the profit and the weight matrices, re-
spectively, and Wj the j-th weight constraint. n denotes the number of binary
decision variables and m the number of objectives and constraints. The repre-
sentation of a solution as a bit string chromosome of length n is straightforward.
Infeasible solutions are decoded using a greedy repair mechanism for the calcu-
lation of the objective values without changing the genotype of the individuals.
The problem is NP-hard, and the exact Pareto set can only be computed for
small instances.
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Fig. 4. Average number of Pareto-optimal solution contained in the population (left)
and empirical approximation quality εmin (right) for KP-100-2 for different µ and ε
values

4.1 Results of (µ + λ, ε)-BMOA

In this section we report results of the BMOA on the knapsack problem (5)
with m = 2 objectives to demonstrate the applicability of the approach. Each
individual sampled from the model is additionally mutated by flipping each
bit independently with probability 1/n. Together with the results from [4] this
guarantees that in the limit the non-dominated population members converge
to a representative subset of the Pareto set of (5) in the sense that each Pareto-
optimal point is ε-dominated by at least one population member.

Fig. 3 shows the development of the population for different ε values for a
typical run. With a small ε, it can be seen that the population is more con-
centrated near the middle of the Pareto set compared to the larger ε value,
where the population is distributed more evenly and broadly. Fig. 4 displays
the number of Pareto-optimal solutions found and the empirical approximation
quality εmin

3 over time. It indicates how the algorithm can be tuned by differ-
ent settings of the µ and ε values. For larger values of both parameters, more
dominated individuals will be allowed in the population: Whereas a large ε value
means that the individuals have to compete for less available “slots”, a larger
µ simply enlarges the storage. More individuals lead to a more accurate model
estimation, but if the fraction of dominated individuals is large, a lot of sam-
pling (and search) effort is wasted on exploring previously visited regions and
thereby increasing the running time. The possibility to tune the approximation
resolution via the ε value is an advantage compared to other existing strategies
for diversity maintenance.

3 εmin := Min{ε ∈ IR+| ∀x ∈ {0, 1}n ∃y ∈ IRwith (1 + ε)f(y) ≥ f(x)}



4.2 Comparison with Other MOEAs

In order to evaluate BMOA with respect to other MOEAs we use the results
of the comparative case study from [10] and focus on the large instances of the
knapsack problem with n = 750.

Table 1 compares BMOA to different algorithms using the Coverage (C)
and the Hypervolume (S) metric. C(A,B) denotes the relative number of non-
dominated individuals contained in the population of algorithm B that are dom-
inated by at least one individual from the population of algorithm A of a given
point in time. S(A) denotes the relative volume of the objective space dominated
by the solutions of algorithm A. The (3000+3000, 10−6)-BMOA is able to domi-
nate more than half of the other algorithms’ populations on nearly all instances,
with the best results on the four-objective problem. The other algorithms are
not able to dominate any of BMOA’s non-dominated points, but they generally
find a broader distribution as the hypervolume values indicate. Because of its
relatively large population size, the BMOA proceeds much slower and it requires
more CPU time due to the estimation of the probabilistic model.

Table 1. Results of the coverage measures C(BMOA,*) (first entry per cell),
C(*,BMOA) (second entry) and of the hypervolume difference S(*)-S(BMOA) (third
entry) to compare the (3000 + 3000, 10−6)-BMOA with NSGA-II, PESA, SPEA, and
SPEA2 after t = 480000 function evaluations, median of 30 runs

* NSGA-II PESA SPEA SPEA2

KP-750-2 0.71, 0.00, 0.006 0.71, 0.00, 0.008 0.52, 0.00, 0.009 0.58, 0.00, 0.013

KP-750-3 0.56, 0.00, 0.009 0.64, 0.00, 0.015 0.63, 0.00, 0.014 0.48, 0.00, 0.016

KP-750-4 0.72, 0.00, 0.010 0.97, 0.00,−0.003 0.99, 0.00,−0.003 0.80, 0.00, 0.008

5 Conclusion

In this paper we discussed the use of Estimation of Distribution Algorithms for
optimization problems involving multiple criteria. A Bayesian Multi-objective
Optimization Algorithm (µ+λ, ε)-BMOA has been designed using a probabilistic
model based on binary decision trees and a special selection scheme based on ε-
archives. The convergence behavior of the algorithm can be tuned via the values
of µ, the minimal population size to estimate the probabilistic model, and ε, the
approximation factor.

The empirical tests on the 0/1 multi-objective knapsack problem show that
the BMOA is able to find a good model of the Pareto set for the smaller instances.
In order to find also the outer region of the Pareto set, large µ and ε values
are required, which slows down the optimization process considerably. Further
research could assess MBOA on other multi-objective combinatorial optimization
problems with stronger variable interactions and on continuous problems.



From the decision-aid point of view it would be interesting to exploit the
Bayesian model also outside the algorithm itself. The compact description of the
model could assist a decision maker who can analyze the decision trees to get
more insight into the structure of the Pareto set and to learn about correlations
in the decision problem at hand.
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