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Abstract. This paper presents a hybrid evolutionary optimization strat-
egy combining the Mixed Bayesian Optimization Algorithm (MBOA)
with variance adaptation as implemented in Evolution Strategies. This
new approach is intended to circumvent some of the deficiences of MBOA
with unimodal functions and to enhance its adaptivity. The Adaptive
MBOA algorithm — AMBOA — is compared with the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES). The comparison shows
that, in continuous domains, AMBOA is more efficient than the original
MBOA algorithm and its performance on separable unimodal functions
is comparable to that of CMA-ES.

1 Introduction

A class of Evolutionary Algorithms (EAs) implement probability distributions to
identify the underlying relationship of the objective function with its parameters
in order to accelerate the convergence rate of the algorithms. Estimation of
Distribution Algorithms (EDAs) [1-3] sample a probability distribution learned
from the fittest solutions. A class of EDAs use a Bayesian network with a local
structure in the form of a decision graph to model the relationship between
discrete parameters on a global level. In addition to that, the Mixed Bayesian
Optimization Algorithm (MBOA) [4] is able to deal with discrete and continuous
parameters simultaneously by using a Gaussian kernel model to capture the local
distribution of the continuous parameters.

MBOA has been shown to perform successfully for several combinatorial
problems [5]. However, on certain continuous benchmarks — including unimodal
functions — MBOA is outperformed [6] by Evolution Strategies, like Covariance
Matrix Adaptation ES (CMA-ES) [7, 8]. The reason for this is attributed to the
relative deficiency of MBOA in adapting the variance of the search distribu-
tion. In order to overcome this deficiency we propose a new variance adaptation
mechanism which significantly increases the efficiency of MBOA in continuous
domains.

Section 2 introduces the principles of the MBOA algorithm. In Section 3 we
analyze the main difference between the estimation of variance in MBOA and in
CMA-ES and propose an improved algorithm, AMBOA, with robust adaptation
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of the estimated variance. In Section 4 we present experimental results that
demonstrate the successful design of AMBOA.

2 Mixed Bayesian Optimization Algorithm (MBOA)

2.1 Main principles of MBOA

MBOA belongs to the class of Estimation of Distribution Algorithms (EDAs)
that explore the search space by sampling a probability distribution that is de-
veloped during the optimization. MBOA works with a population of N candidate
solutions. Each generation, typically the N/2 fittest individuals are used for the
model building and N/2 new solutions are generated from the model. These off-
spring individuals are evaluated and incorporated into the original population,
replacing some of the old ones. This process is repeated until the termination
criteria are met.

A Bayesian network (BN) is one of the general models to express discrete
probability distributions. The underlying probability distribution p(X) is ap-
proximated as the product of conditional probability distributions of each pa-
rameter X; given IT; — the variables that influence X;

n—1
P(Xo, oy Xno1) = [[ p(X:lIT5). (1)
i=0

We use upper case symbols X; to denote the i-th design parameter (or the
i-th gene in EA terminology or the i-th random variable in mathematical ter-
minology) whereas lower-case symbols z; denote a realization of this parameter.
Boldface symbols distinguish vectors from scalars. :z:g-g) denotes the j-th individ-
ual in generation number g.

The construction of an optimal BN from the population of candidate solutions
is itself an NP hard problem [9], and EDAs usually use either an incremental
or a greedy version of the learning algorithm to accelerate the BN construction.
MBOA uses the latter approach.

MBOA can be formulated for continuous and discrete domains. In binary do-
main it performs similarly to the hierarchical Bayesian Optimization Algorithm
[10], but it employs a different model building algorithm which ensures efficient
parallelization. In continuous domains, MBOA searches for a decomposition of
the search space into partitions where the parameters seem to be mutually in-
dependent. This decomposition is captured globally by the Bayesian network
model and Gaussian kernel distributions are used locally to approximate the
values in each resulting partition.

2.2 Construction of the continuous probabilistic model in MBOA

MBOA attempts to capture the local conditional probability density functions of
the continuous parameters f(X;|IT;). Each f(X;|IT;) is captured in the form of a
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decision tree [11], which is more efficient than the traditional way of keeping IT;
explicitly in the form of a dependency graph and using tabular representations
for local conditional distributions.

We will describe how the decision tree for a concrete parameter X; is con-
structed from the population D. In particular, for each parameter X; the set of
influencing variables IT; has to be determined. Since it is computationally expen-
sive to test independence directly in the continuous domain MBOA recursively
transforms the problem into binary domain.

First, X; and all continuous parameters that are available as the poten-
tial candidates to form IT; are temporarily converted into new binary variables
by defining continuous split boundaries on them. The method for finding the
boundaries is presented in [4]. As soon as all variables are discrete, the Bayesian-
Dirichlet metrics with likelihood equivalence (BDe) [12] is used to determine the
variable that influences X; the most. The chosen variable is then used for split-
ting the population D and the construction is recursively repeated for both
branches of the new split. The recursion stops when for all variables the BDe
score (decreased by the complexity penalty term) returns a negative value.

This results in a decomposition of the f(X;|II;) domain into axis-parallel
partitions where X; is assumed to be decorrelated from the variables in IT; and
can be approximated by univariate probability density functions. The Gaussian
kernel distribution of a parameter X; in a concrete leaf j given a concrete m;
(the realization of IT;) can be expressed as:

f&ilmie{mi})) = ey 2 N(m,od) i=0,.n—1 (g

il vme{z;};
where {m;}; denotes the set of all possible realizations of IT; traversing to the
Jj-th leaf, {z;}; C R denotes the set of realizations of variable X; among the
individuals from population D that traverse to j-th leaf, and |{x;};| denotes the
size of this set. All the kernels in the same leaf have the same height 1/|{z;};]
and the same width o;;. In our experiments we set ;; equal to

oy = max{z;}; . mm{arl}J7 3)

where the default setting for the scaling factor r in MBOA is r = |{z;};| — 1.
The newly generated offspring population is used to replace some part of the
former population. For effective diversity preservation, MBOA uses the so-called
Restricted Tournament Replacement (RTR). In RTR, each offspring competes
with the closest individual selected from a random subset of the former popula-

tion. This subset comprises 5% of the population in our experiments.

3 Adaptive MBOA - AMBOA

3.1 Motivation

We investigated the susceptibility of the original MBOA to premature conver-
gence and compared it to the Evolution Strategy with Covariance Matrix Adap-
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||Name ||Functi0n |St0p. CriterionH
Plane fplane = —Zo —1010
Sphere || fsphere = Dor g 7 10710
Ellipsoid || feni = Y77, 10" 77122 10710
Rastrigin || frastrigin = 10n + > (z7 — 10 cos(27z;)) 10710

Table 1. Test functions to be minimized and the corresponding stopping criterion.
The initial solutions were generated uniformly using the initialization region [0.5, 1.5]"
for fplane and [—3,7]™ for the other functions, the global step size (%) of CMA-ES was
initialized to 1.0 for fpiane and 5.0 for the other functions.

tation [7,8]. We used the (p, \)-CMA-ES as described in [13], where the covari-
ance matrix C is updated by p ranked parents selected from the A individuals.

The ability to enlarge the overall population variance can be tested using the
plane function fpiane (see Tab. 1). Within a small enough neighborhood, a linear
function is a good approximation for any smooth function. Therefore, fyiane is a
good test case for a situation where the population variance is (far) too small.
Fig. 1a shows the function value versus the number of function evaluations for
both methods. It can be seen that CMA-ES reaches the termination criteria of
fplane fast, using a population of only 10 individuals. On the other hand, MBOA
is slower by 3 orders of magnitude. The reason is that MBOA — unlike CMA-ES
— has no effective mechanism to increase the variance. Up to large population
sizes (N < 3200 for n = 10 on fpiane), MBOA is not able to divert the solutions
to fulfill the stopping criterion. We observed that the variance shrinks faster than
the mean of the distribution moves. With N > 3200, the Restricted Tournament
Replacement (RTR) is able to reduce shrinking, but at the expense of slow
convergence.

Subsequently, we tested MBOA on the sphere function (see Tab. 1) and
increased the population size according to the sequence 10, 20, 50, 100, 200,
400, 800, 1600, 3200 until the optimum was found in all 20 runs. In Fig. 1b
it is shown that population size N=100 is needed by MBOA to solve the 10-
dimensional fsphere benchmark. With lower population size some of MBOA runs
were not able to reach the precision 10710,

Consequently, we identified that MBOA performance is harmed in case of
low population size. This can be explained by the large deviation present in
the estimated parameters. These deviations are further propagated by iterated
sampling and re-estimation. In contrast, CMA-ES adjusts the variance robustly
and needs only very small populations. Moreover, the model parameters in CMA-
ES are updated incrementally, which makes them less susceptible to deviations.

3.2 Design of AMBOA

Based on the above observations, we aimed at improving MBOA. To prevent
variance from premature shrinking, we experimented with the width of Gaussian
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kernel o;; by setting the factor r (in Eq. (3)) as r = /|{z:};| or even r = 1.
However, different benchmarks required different settings to perform efficiently.
Therefore, we introduce an overall scaling factor, 7, to control the kernel width
of the marginal distributions adaptively:

fXilmi € {mil) = —— 3 N(m,n@702). (4)

Hx'}gl vme{z;};

Compared to eq. (2) one can see that the factor 7 is used to scale the width of
each kernel. Inspired by the well-known 1/5-success rule for ESs [14], the factor
is adjusted according to the success rate of RTR. In our implementation the in-
formation about success or failure of each individual is immediately accumulated
into the step size. In case of success the factor is multiplied by «, otherwise it
is multiplied by a71. For N /2 offspring individuals (with Ny, successes and
Nyqq failures), the total change of factor in the g-th generation can be expressed
as

n(9+1) — n(g)aNsuccame‘tﬁ, (5)

where p denotes the desired success rate (for Nyyce/(Nsuce + Nyaar) = p it holds
79t = (9)). The choice of a determines how fast the desired success rate is
achieved. For increasing a the adaptation is faster, but also more sensitive to
oscillations. Our experiments with fsphere and frastrigin indicate that the choice
of a does not depend significantly on the problem size n, but it depends on
the population size N. To limit the maximal change of (9t per generation,
we choose o = e?/N. If all the offspring individuals are accepted - which is
very unlikely — then it holds ¥t = 2(9). We also performed a number of
experiments to determine the optimal choice of p. For unimodal functions the
choice of p is not critical (2a) and the Rechenberg’s rule p = 1/5 could have been
used. For several multimodal functions the optimal p is decreasing with problem
size. This is demonstrated in Fig. 2b for frastrigin- As the trade-off between
speed of solving unimodal test functions and robustness of solving multimodal
test functions, we choose p = 0.05+ ?7%. Detailed analysis of the proper choice of
a success rate for deceptive functions and the role of RTR during the adaptation
will be a subject of future research.

4 Experimental results

We compare the performance of the newly proposed AMBOA to the original
MBOA and to CMA-ES. The benchmark functions are summarized in Tab. 1.
All functions are separable, and only fRastrigin is multimodal. In Fig. 1, 3, and 4
the bold lines are the median values of 20 runs, whereas thin lines show the min-
imum and maximum values. The five symbols per each measurement represent
maximum, 75-percentile, median, 25-percentile, and minimum function values.
The plots show results for the minimal population size for which all 20 runs
converged. We start each experiment with population size N = A = 10. If any of



6 Jiri Ocenasek et al.

2 4 6 1 2 3y
Ioglo(functlon evaluations) log, (function evaluations)

(a) (b)

Fig. 1. Function value versus the number of function evaluations for MBOA (dashed
line,’+’), CMA-ES (dot-and-dashed line,’x’) and AMBOA (solid line,’o’) on 10-
dimensional fplane (a) and fophere (b). Population sizes (a): A = 10 for CMA-ES,
N = 3200 for MBOA and N = 10 for AMBOA. Population sizes (b): A = 10 for
CMA-ES, N = 100 for MBOA, N = 10 for AMBOA. The five symbols per each
measurement represent maximum, 75-percentile, median, 25-percentile, and minimum
function values of 20 runs.
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Fig. 2. (a) The influence of chosen success rate p on the number of evaluations
MBOA needs to solve 5-dimensional (’0’), 10-dimensional (’<’), 20-dimensional (’0°),
30-dimensional ('+’) , and 40-dimensional (’x’) fsphere- (b) The influence of chosen
success rate p on the number of evaluations MBOA needs to solve 15-dimensional (’o’),
25-dimensional (’<’), 35-dimensional (’[1’), and 45-dimensional (*+’) fRrastrigin. The suc-
cess rates from p = 0.02 to p = 0.48 in 0.02 steps were examined. Median values out
of 20 runs are shown for success rates where MBOA converged within less than 2e10°
fitness evaluations in at least 50% cases. Population size (a) N = 10, (b) N = 100.
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20 runs do not reach the convergence criterion, the population size is increased
according to the sequence 10,20,50,100,200,400,800,1600,3200 until the method
converges in all 20 runs. The maximum population size tested was 3200.

We test AMBOA on fplane, and fsphere- In Section 3.1 these functions ap-
peared to be difficult for MBOA. AMBOA effectively increases the variance on
the 10-dimensional fpiane as shown in Fig. la. In addition, it requires a signifi-
cantly smaller population size of N = 10 compared to N = 3200 for MBOA and
it even requires less fitness evaluations than CMA-ES. AMBOA needs only a pop-
ulation size of N = 10 to reliably optimize the 10-dimensional fsphere function,
whereas MBOA needs N = 100 (Fig. 1b). The variance adaptation mechanism
decreases the minimal required population size. This results in lower number
of fitness evaluations, proportionally to the decrease of N. The same type of
AMBOA behaviour is evident from Fig. 3, where the results of optimizing the
10-dimensional fe; are depicted. The comparison of results from Fig. 1b and 3
indicates that AMBOA performs similarly on fiphere and feni. The adaptation
of the scaling factor n plays the same role in both cases, whereas the relative
scaling of the individual coordinates is estimated empirically. In contrast, for
CMA-ES it is much easier to adapt on the sphere function, because it starts
with the spherically shaped distribution (so it is sufficient to adapt the mean
and scaling factor only), whereas for the fe; it has to estimate the complete
covariance matrix.

We compare AMBOA, MBOA and CMA-ES on the 10-dimensional Rastrigin
function (Fig. 4). The Rastrigin function is multimodal but its underlying model
is a hyper-paraboloid. With a large population size A = 800 CMA-ES is able to
discover this underlying model in all 20 runs. AMBOA needs a population size
of N = 100 whereas MBOA needs N = 200. With smaller population sizes the
algorithms get stuck in a local optimum. Since AMBOA does not approximate
the fitness landscape by a unimodal density, there is a different way how AMBOA
explores the search space. We assume that AMBOA and MBOA utilize RTR to
keep samples from the neighborhood of several local minima. Since the problem is
separable, the local minima in all dimensions are sampled independently to form
new solutions. Provided that in each dimension there is at least one solution that
contains the proper value, the global optimum is reached after a small number
of trials. The slope of the convergence curve of AMBOA is steeper than that
of MBOA. This indicates that the variance adaptation plays a role in the local
improvement of new solutions.

We investigate how AMBOA and CMA-ES behave for an increasing number
of dimensions on fen; (Fig. 5). We measure the number of fitness evaluations to
achieve the given fitness in 2, 5, 10 and 20 dimensions, with A = 10 for CMA-ES
and N = 10 for AMBOA. The medians of 20 runs are shown. We observe that
CMA requires less fitness evaluations to evolve high precision solutions, but the
differences between AMBOA and CMA-ES decreases with increasing number of
dimensions.

The proposed mechanism for variance adaptation allows MBOA to solve
separable unimodal benchmarks with relatively small population sizes. With low
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Fig.3. AMBOA (solid line,’o’), CMA-ES (dot-and-dashed line,’x’), and MBOA
(dashed line,’+’) on 10-dimensional fey;;. Population sizes: A = 10 for CMA-ES, N = 10
for AMBOA and N = 100 for MBOA. The median of the number of required fitness
evaluations to reach 107'° precision was 4450 for CMA-ES, 5885 for AMBOA and
65650 for MBOA.
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Fig.4. AMBOA (solid line,’o’), CMA-ES (dot-and-dashed line,’x’) and MBOA
(dashed line, >+’) on 10-dimensional frastrigin- Population sizes: A = 800 for CMA-
ES, N = 100 for AMBOA and N = 200 for MBOA. The median of the number of
required fitness evaluations to reach 107! precision was 38550 for AMBOA, 64000 for

CMA-ES and 227900 for MBOA.
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Fig. 5. Comparison of AMBOA (solid line) and CMA-ES (dashed line) behavior on
2-dimensional (*+’), 5-dimensional (’x’), 10-dimensional (’o’) and 20-dimensional (’<’)
function feni. Population sizes: A = 10 for CMA-ES and N = 10 for AMBOA.

population sizes the RTR behaves like the usual tournament replacement, so its
niching effect is eliminated. Additionally, in case of small populations, MBOA
penalizes most of the discovered dependencies and does not incorporate them
into the model, thus imposing the separability of the optimized problem.

In case of nonseparable multimodal problems, our first experiments indicate
that CMA performs better if the problem has a unimodal global underlying
attractor, whereas AMBOA performs better for problems of combinatorial or
deceptive nature.

5 Conclusion

Variance-adaptation is introduced to the Mixed Bayesian Optimization Algo-
rithm as a necessary ingredient for the reliable and efficient solving of unimodal
optimization problems. The newly proposed AMBOA algorithm uses a variance-
adaptation mechanism based on the success rate of the replacement operator.
The proposed mechanism can be also seen as an adaptation of Rechenberg’s
success rule for kernel-based distributions and can be used in general, not only
within the scope of AMBOA. This approach does not rely on the assumption
of unimodality and can be used together with the elitistic selection and replace-
ment. On the examples of the separable test functions — plane, sphere, ellipsoid,
and Rastrigin — we showed that the improved AMBOA performs comparably
to Covariance Matrix Adaptation Evolution Strategy and requires a much lower

population size and a much lower number of fitness evaluations than the original
MBOA.
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Most of the existing Estimation of Distribution Algorithms — for example
the Iterated Density Estimation Evolutionary Algorithm [15] — do not have the
means to effectively adjust the variance. The usefulness of the variance adap-
tation for the EDA framework and for non separable functions is a subject of
future research.
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